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Nonequilibrium structures in the thin layers of ferronematics
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The onset of remagnetization of ferronematissspensions of stretched ferromagnetic colloidal particles in
nematic solvenffilling a thin flat gap has been studied. We supposed that the average deviation of the particles
axis from nematic directon is very small in each volume of the sample; both the initial nematic diregjor
and the external magnetic fieldl being parallel to the plane of a gap contained by a sample. On the basis of
a microscopic analysis and the Fokker-Planck equation for a ferromagnetic particle the macroscopic equation
describing the kinetics of the suspension remagnetization has been derived. This equation includes an empirical
relaxation timer. With the help of this equation three cases have been considered. The first one concerns a
suspension with zero initial magnetization and fieldperpendicular tan,. The second one concerns a sus-
pension with a frozen to a solvent nonzero magnetizatiois (greater than time of observatijoand the field
H directed such as in the first case. The third situation corresponds to nonzero initial magnekizatdm
suspensionM, being parallel tony and fieldH being antiparallel tdM,. In the first and third cases remag-
netization occurs as the second order phase transition oklyeikceeds some critical valué. and periodic
structures can arise at the initial stage of this procedd3H. ,>H.. In the second case ferronematic
remagnetization is initiated by an infinitesimal magnetic field. The structures arising during this phase transi-
tion are homogeneous in both directionsngfandH. [S1063-651X%98)02403-9

PACS numbegps): 61.30.Gd, 75.50.Pp

[. INTRODUCTION magnetic moments turn in the field in different directions,
therefore, this mechanism may lead to the occurrence of a

The stable suspensions of nonspherical colloidal ferrovariety of defects in a nematic matrix. The formation of such
magnetic particles in the nematic liquid crystéisrronemat- ~ defects is very disadvantageous energetically, so the prob-
ics) attract considerable interest because their structure magpility of this reorientation mechanism is very small.
be controlled by means of small magnetic fields, which is In the second case each particle turns practically without
impossible for pure liquid crystals. Their physical propertiesany perturbation of the director field in the particle in the
have been investigated theoretically and experimentally, fopearest vicinity. To do this, the particle needs to overcome a
example, in Refs1-7]. The equilibrium ferronematics Fre- potential barrier corresponding to the perpendicular orienta-
deriks effect has been studied in Rd®,7]. The kinetics of tion of the particles and the director.
such a phase transition has not yet been studied. This mechanism of particle reorientation may be realized

The main aim of the present research is the analysis of thi@ practice if the thermal energy of the system is not negli-
initial stage of remagnetization in a ferronematic filling a gibly small compared to the height of this barrier. We as-
thin flat gap. The analysis is based on the following assumpsume this method of particle reorientation.
tions.

F_irst, all p_articles are identical and needlelike shaped. Il. EQUATION OF MAGNETIZATION
Their _magnetlc mome_nts are constant at absolute values and CHANGE KINETICS
are aligned along their symmetry axes.

Second, the interaction between ferromagnetic particles Our aim now is to derive the macroscopic kinetic equa-
and the nematic solvent is very strong. As a result, all thdion for the absolute value of a ferronematic magnetization.
particles are aligned along the nematic direatom each Let us introduce a unit vectoe aligned along the particle
small volume element and average deviations of the particlenagnetic momenin and the distribution functiori(e) nor-
axes fromn are negligibly small. malized to unity. The suspension magnetizatidris

Third, the particle concentrationis small enough to ne-

glect their magnetic interaction with each other.
Fourth, the solvent molecules strongly interact with gap M :me ef(e)de, (1)
boundaries and on these surfaces vectdnas a constant
d|regt|on. , . wherem stands for the absolute value of the particle mo-
Finally, we shall neglect the interaction between the mag- S : ;
netic field and the solvent molecules ment. The distribution functioi may be determined from
' he Fokker-Planck equatid®]. Let us write this equation in

o> . .t
It should also_ be noted_ that two -I|m|t|ng mech.anlsms exIStthe coordinate system connected with the nematic director:
for the ferroparticles reorientation in ferronematics under the

presence of an external magnetic field. The first one is con-
nected with the rotation of the particle with the nearest layer of _ K( f EKU
T

—= +
of liquid crystal. Ferroparticles with different orientations of at KDKT, @
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9 whereU . IS the maximum value df, ¢, is the value ofp
K= ea_e : corresponding tdJ o, andU . andU _ have the meanings

of two minima of the energyJ (U, <U_). Taking into
HereU(e) is the particle potential energy afdis the abso- ~account the inequalitiets), we may use the following ap-
lute temperature in energetic units. In general, the rotationa®roximations:
diffusivity D is a second rank tensor for a nematic system, its
compongnts are functions ef To simplify the calculyations Us=—ugW(D =T, U_=—uow(1)+ T,
we suppose, as if8], thatD is a scalar constant. The order
of valueD will be determined below.

The potential energy of the particle is defined as fol- -
lows: om=>

Umax= —UoW(0) —a, T,

mH
U=—(ae)+U,, a=—, (3  whereq) anda, are the components of vecter parallel

T and normal to the directar. According to Eq.(6), the mean

whereH is the magnetic field ant,,(e) is the interaction ~2aPsolute value of the particle magnetic mom@n} may be

energy between a particle and a nematic solvent. The explicifitroduced as follows:
expression folJ,,, as a rule, is unknown. Let be the angle (my=m(p,—p_)
between the particle axis and the direatoand orer

Thus, we may obtain the expression for the ferronematic

U,=-— UOW(COSZGD), (4) magnetization

wherew(x) is a dimensionless function angj is an ampli- M = _ _
tude ofU,. We assume that the interaction between a par- c{m=cm(p.—p-). ®

ticle and a solvent is so strong that the probability of a parqt must be noted that according to our assumptions the direc-

ticle to be aligned along is much greater than that in other tjons of magnetizatioM andn coincide in each small vol-
directions. In so doing, the functiom(x) is characterized by yme of the system.

a sharp maximum at=1 and minimum ak=0. Therefore, Let us denote by? the equilibrium values op.. corre-
the strong inequalities sponding to the fieldH. In the approximation5) we get
Su=ug[w(1l)—w(0)]>T, du>aT (5) . lexg=a))
Pe~g — . 9
hold true. For the above mentioned reason, one may yaite 2 coshay))

was done in Ref.9,10) The equilibrium magnetizatioM®, taking Egs.(8) and (9)

f~p, 8(e—0)+p_8(e—m), (6)  into account, is
b, +p. =1 M%=cm(pS —p?)=cmtani( ). (10)
Herep.. are the probabilities to find a particle magnetic mo- Substituting Eqs(9) and(10) into Egs.(7) and(8), we come
ment aligned along the axes=0 and =, respectively, O the equation for the magnetization:
and §(x) is the delta function. dM 1
By using the results of Ref$9,10] and taking into ac- —=—(M-M9),
count the strong inequalitig®), we obtain from Eq(1) at dt T (11)
D =const the equations fqy-. :

1 ou
dp, dp_ ;=W++W_~D8XF<—?+CYL COS|’(a||).
T W:_(W+p+_w—p—)
Let us estimate an order of magnitude of relaxation time
=—(W,_.+W_)p,+W_; 7. The estimation for the diffusion coefficiebt is
Wi:Ciqu_(Umax_Ui)/T]! T

(7) D 77|d2 !

C+=E'y (ym/27T)Ysing ’

ST m where 7 is the Miesowicz shear viscosity ahcandd, are

the length and diameter of a particlex(d,). For the values

d?u |~10"° sm,d,~10 ° sm, andn~1 ps[11] we have the
Y= F(‘P: 0,m), estimation7~[0.1exp@u/T—a, )/coshg)]sec.

¢ Strictly speaking, the relatio7) is valid only for the

42U constant potential barrier in the plage= 7/2. In general, if

( — Z) a# 0 this does not hold because the height of batdigg, in
’ the planep= 7/2 approximately equalg/(0)—T(«, €).
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axis Ox is parallel and axi$Dz is normal to the boundary
planes. We assume that the initial nematic direatpis par-
allel to Ox and on the boundaries of a géie., |z|=d/2),
and that the conditiom,=1 always holds. The constant
magnetic fieldH aligned with the axi©Qy is switched on at
t=0. We assume that the dimensionless field is negligibly
small (@<1), thereforer(a)= 7(0)=const.

Experimental and theoretical investigations of the Fred-
eriks effect kinetics in pure nemati¢42—19 have shown
that periodic nonequilibrium structures in the direction of
axisOx can occur in this process. Thus, we need to take into

FIG. 1. Schematic representation of the studied syst&nmol-
ecules of liquid crystal basé2) ferromagnetic particles.

account thex andz dependencies af andv, but not they
dependence. The velocity in this situation has only the

component, [12-185.

A strict derivation of equation similar to Ed7) for the

systems characterized by an inconstant height of the poten-

tial barrier represents a very complicated problem. We do not
know of any papers containing a constructional decision con-
venient for use in practice. However, it is clear that the main
probability of flux during particle reorientation taking place
in the neighborhood of a minimal point of the potential bar-
rier. Therefore, in the first approximatioW.. may be esti-
mated as if the height of the potential barrier was constant
and equal to its height in a saddle poifibh this case
—Ugw(0)—a, T]. It is this approximation we have used. In
this situation we obtain the upper estimate for the probability
W.. and lower estimate for the relaxation timelf « does

not exceed unity, then our estimate does not lead to signifi-
cant errors.

IIl. EQUATIONS OF NEMATODYNAMICS

Neglecting inertial effects, the standard equations of
nematodynamics arfd 1]

Vo=0, diw=0, (12)

[MH ]+ [nh]={n[y;N+ y2(nA)]},
O-ij = — p5|] + alninjAka’lknm-ﬁ- azniNj + a3ani + a4Aij
+ a5ninkAk]-+ aﬁAiknknj ,

N_dn+ _1 v A _l (71)i+(7l)j
“ap el e=gron Aol o Tax )

h=K,Vdivn+K,{[nV(nrotn)]—2romn(nrotn)}

+ Ks{rof n[nrotn]]—[rotn[ nrotn]]},

YiT a3~ ay, Y= ag—as, |L,|=X,Y,Z.

Here v is the velocity of a suspensiom, is the pressure,
aq, ..., andK, K,, Kj are the Leslie and Frank co-
efficients of the nematic, and}; is the Kroneeker symbol.

IV. THE INITIAL STAGE OF FREDERIKS TRANSITION
IN DEMAGNETIZED FERRONEMATICS

Let us introduce the angle according to the formulas

ny=cosd, ny=sing.

Equations(11) and(12) become

2
;W[e(agsi#a— @,C050)]

2
:ﬁ{v[z(’/l_ N4+ 12)SIOCOS 0
X

) (13

+ n.cos 6+ nbsin40]}+(9—2
9z
X [v( 17,C08 0+ npsirto)],

(90_ d n2 s2 (92 K nz
Y15 = 5[V (@asio—asco 0)]+ﬁ[0( 18I0

320
+Kscog0)]+ KZF +MH_cod,
YA

M vy in
W— ;[ anl"(asm )],
1 1
pEMC a=gas, my=5(astast ag),

1 1
ﬂczi(_az"' st as), 7]425(%"' Ne= Y1),

v1=§(a1+ ayst ast ag).

Here n,, my, and 5. are the Miesowicz shear viscosities

and », is the elongated flow viscosity.

We now consider a ferronematic inside a flat gap of thick-
nessd (Fig. 1) and assume that the initial magnetizatidn

At the onset of ferronematic remagnetization the values of
0, v, and M/ are small. We assume that<@H-—-H,)
of the suspension is zero. Let us introduce a Cartesian coorfH., whereH, is the critical field of the Frederiks phase

dinate system with the origin at the center of the gap. Thdransition. Therefore, we can write
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Let us write §, in the following form:
H(X,Z,t)ZCOS]ZE 0,,cokKX,
K

0 (1)=T(t) O+ ftF(t—t’)F(t’)dt’,
0
v(x,z,t):cosquk v SinkXx, (14) (19

dar
6k0: 0k(0)1 F(O):lv a|t=0:_wk

a
M(x,z,t)=cosqu M cokx, q=a.
k [the second condition fdr follows from the systen{15)].
HereI is the Green function. Substituting E(L9) into

Linearizing Eq.(13) over § andv, taking Eq.(14) into ac- Eq. (18), we obtain

count, we come to the following equation for the harmonic

incrementp, : Wi
I'(t)= ———[exp(pst) —exp(pat) | +exp(p,t),
df)k 1 P2—P1 (20)
W=wk0k+—MkH,
Ye 1| 1+t 1+w7\? wye— mnaH
P12=5 — * —4 :
dM, 1 2 T T TYe
W=——(Mk—mna9k), (15)
T The mean valuéd,,) (and thereforé 6,)) is equal to zero. It
K k24 K02 (a,k)2 is easy to show thatF(t) 6,)=0. Taking this into account
wk:3—2q Ye=Y1— -y we obtain the following equation for the second moment of
' e /1 2 2
Ye nck + 7.9 O:
For all real nematicsy; 7> a,?, therefore,y,>0. ) ) ) t(t
The system(15) is valid provided that the characteristic (015 =T()(bio) + JO fol“(t—tl)l“(t—tz)
values of 6, and M, are much more than their thermody-
namical fluctuations. However, this condition fails for the X(F(t1)F(ty))dt,dt,. (21
onset of the Frederiks transition.
To account for the fluctuations @ andM we introduce The initial moments(62,) and (MZ,) are equal to the

into Eg. (15 stochastic forces with zero average values:  corresponding moments until the field is switched on.
They may be determined using standard thermodynamical

de 1 . o
d_tk = b+ 7MkH (D), considerations:
e
d ()= e
My 1 ko) = > N
X _ - K3k +Kyg)V
at T(Mk mna6y) + {i(t), (16) (K3 20°) 22
Tx
(&0=0, (&»=0. <MEO>=V'
From the fluctuation-dissipative theorem we have ) )
Using Egs.(17) and (18), one may obtain
2T
(&(D & (1)) =— 8(t=t") Sy, H2 t+t
\% 170
Ve <F(t1)F(t2)>:_2<MEo>eXF< -
Ye
, _ZTX ,
(L) e (t ))‘T_V5(t_t ) Sk’ s (17 TyH? ty—t;
+2 > e - (tz_tl)
o B mZC Ye
<§k(t)§k(t )>_0! X_T- 2T
+V—6(t2—t1), (23
Here y is the initial magnetic susceptibility of ferronematic. e
Excluding My from Eg. (16), we obtain where O(x) is the theta function. Substituting Eg&0),
o (22), and(23) into Eq.(21), we come to the explicit expres-
M.,. wkgk(t)_mrgk(t/)ex,{ — t_) =F(t), sion for the second moment @(t). ,
dt e Jo T If the incrementp, is positive, then the momen(d;)

(18 increases with time, if negative then it decreases. The incre-
mentp, is more than zero provided that

MyoH 6 Ht [ty
F)=— —&n 7 +Zf0ex T Al mcHa = cTa?>K k2 + K 02, (24)

t&(),  Mi=M(0). Let
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Py FIG. 3. Plot ofp, (sec') as a function orr (seq. The physi-
cal parameters of the system are the same as for Fig. 2. The figures

. ( 2 near curves are equal té&/@)>.
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V. THE INITIAL STAGE OF REMAGNETIZATION
OF RIGIDLY MAGNETIZED FERRONEMATICS

gt L We assume here that before the fields switched on the
ferronematic is magnetized along tf axis and the char-

acteristic timer is much greater than the time of the experi-

I I X ment. In this situatiorM = const throughout the phase tran-
(b) 0 40 80 sition. At the initial stage of the process, E¢$3) reduce to

FIG. 2. Plots ofp; (sec ) vs x=k?/q?. (a8 m=10 swx; I-a
=0.008 48 4039, 2a=0.008 48 4041, 3 a=0.008 48 4043.(b) 70 v du
a=0.01; 1-7=0.1 sec, 27=10000 sec, 3 7=20 000 sec. The T2 gy T ”CQ“L a2
system parameters ace= 10'° cm™3, T=300° Kkg, d=10"2 cm.
The elastic and viscous characteristic of nematic are the same as for
the PBG systerfil3]: K;=12.1x10 7 dyn,K,=0.78x 107 dyn,

K3=7.63x10 7 dyn; 7,=1.74P, 7,=0.3P, 7.=69.4P, y, 90 o 720 720
=69.4P. —=—a;— +K3— +K,— +MH
Y1 X2 % 3&)(2 2&22 ,
Kz 6<1, M=const 26
a=d\/ o7 (25 < ' (29

0(z,t=0),v(z,t=0)=0, 6(z==*=d/2}),

If a>a. thenp; is positive for allk?<(cTa?—K,q%)/Kj
and, therefore, the Frederiks transition occurs. This result for

the critical field of Frederiks phenomenon corresponds to the v(z==d/2t)=0.
results of equilibrium thermodynamical theofsee, for ex-
ample,[11]). We shall seek the solution of the probléf®) in the form

In Fig. 2 the results are shown of calculationmf as a
function of k. If « is less than some criticat’ > a,, then
p1(k) is a monotonically decreasing function. It means that
the harmonic wittkk=0 has the maximum velocity of growth
and the ferronematic will be homogeneous along the @xis
during the Frederiks transition. But #>a’, the function |t the system is infinite in the direction ofthen all harmon-
p1(k) have a maximum akn,#0. Therefore the harmonics jcs with k=0 will dissipate. Thus the only harmonic with
with k=kp,, has a maximum growth velocity and the non- k=0 is of interest to us. In distinction to the preceding situ-
equilibrium structures periodical alor@x will occur at the  ation with zero initial magnetization, the small thermody-
Frederiks transition. Earlier, such a conclusion was made imamical fluctuations o andM are not of principal impor-
[12-15 for a pure molecular nematic with=0. The plots tance for us now.
of p; as function ofr are given in Fig. 3. Coupling Eq.(27) with Eq. (26), we have

Hzg W, (z,t)cokx, u=2k u(z,t)sinkx. (27
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AWy J2u A. Rotation of n in plane (x,y). Structures periodical

k .
k— = — nK2u + n,——, along axisOx
@z ot Nk U™ 7a 972

The suspension velocity now must be aligned with axis
Oy and periodical along x. The nhematodynamic equations
W, , PP, (12) in this situation are
'ylwzazkuk_Kg,k Wk+ Kz kiO,

>
9z 7 i[g( a3Sin?6— a,c00)]

at ax
IWg 3?Wq 92
N =Ka por +MH, (28 =§{v[2(yl— N4+ 75)SINPHcOLH
4 + 5c.codt 0+ nysint o]}
w(2,0), u(z,00=0, Wk( J—“E,t>, 72
+ —[v(75008 0+ 7SI’ )],
9z
. (30)
uk(i—,t)=0, for all k. 90 9 &
5 _a L, 9 .
Y1 g = 5LV (@asito— azcos )]+ 0X2[9(K15'n20

The solution of Eq(28) is 5

) ,
+Ksco86)]+ KZF +MHsing,
A

szo, k#O,
1 1
AMHd? = 1 L [{ K Zt” a2:§(77b_ 7c— Y1), 01325(%_ 7t Y1),
Wgo= —exp ——
0 K2 n:1’3 .... (7Tn)3 qn
1
d 72=% (1+ 17— 71)-
><sir{qn z+§ , (29 e
For this situation in the linear approximation by; Eq. (11)
i is
e m__1 M+ yHcosd 31
—i =~ 7 (M+xHcos). (31

As follows from Eq.(29), the distortion of nematic struc-

ture can occur now in the infinitesimal magnetic fi¢tde  Here we take into account the signldfprojection into axis
same conclusion was arrived at the analyggd] of the Oy

equilibrium state of ferronematic@nd ferronematic has a In the linear approximation by andv Egs.(30) and(31)
homogeneous structure in the gap plane during remagnetiz@ecome

tion.
99 v . v
d— — = p— -
VI. THE FIELD H ANTIPARALLEL 2gt ax . Mo gz T Mg
TO INITIAL MAGNETIZATION
Let at the initial moment the nematic directiag and fer- d6 du %0 2
ronematic magnetizatioll, be aligned with the axi®x. At Vigr Tt K3ﬁ + Kzg +MH (32
t=0 the external magnetic fieltH antiparallel toMg is
switched on. Our aim again is the investigation of the initial IM 1
stage of then reorientation when the angkbetweem and —=—=(M+yH).
ng is very small. We assume thit, is much more than its Jt T

thermodynamical fluctuations and neglect them. . . )
During reorientatiom may rotate in a sufficiently com- Solving the last equation, we obtain

plex manner and may be unhomogeneously dependent on

radius vectorr. But if @ is small then the movement of

may be interpreted as a superposition of its rotation in plane

(x,y) (with structures periodical along the ax@x and axis

Oy) and rotation in planex,z). Let us study these types of Substituting Eq(33) into the first and second equations of

movement ofn separately. Eq. (32), we come to the following system:

M=—XH+(MO+XH)exp<—£T). (33



4302 ANDREJ YU. ZUBAREV AND LARISA YU. ISKAKOVA 57

g 9 7%v 7% ’ , . AT jt )
— e — — =7 —— - O () =|(05)+—=— | exd —2g.(t")]dt" |exd 2g(t)],
ag o0 ncax2+na022' (0(1)=1{ (i) BV o A —2gxk(t")] d29(t)]
2 2 s ., G(s)—Kgzk’s
A S S (34) gk(5)=f o(s)ds =————, (39)
Lot TZox 32 252 0 k

t
_ 2
+H(M0+XH)6exr{ 7_) xH<6. G(s)=H7(Mgy+ xyH) —(xH?+K,0?)s.

o

Below we assume thatH—H,)/H.<1, whereH, is the The initial value(63,) of the moment 62) may be deter-

critical field of reorientatiorf1,11]. We seek the solution of mined according to thermodynamical theory of fluctuations.
Eq. (34) in the form Using the standard results of this theory, we get the follow-

ing expression:

0= o (t)cokxcoxz, v=_2, v(t)sinkxcogz. 2T

Zk <t S ; <t . (0§k>=v(K3k2+ K,q2+MgHg) 72, (40)
(35
o _ . whereH, is the magnetic field up to the momet 0 when
Substituting Eq(35) into Eq. (34), one obtains the fieldH is switched on(we assume thatl, is parallel to
Mo).
36y ) ) At t/r<1,
asz: _(ch +7,Q YUk,

1
gk~IB—(MOH—K2q2—K3k2)t. (41)

k

a0 . .

71a_tk = — akv,— (K3k2+K,G2) 6, If h=MyH—K,q?>0 theng, is positive for allk< \h/K2.

As follows from Eq.(39), the corresponding momeKip2)

t increases. So the nematic reorientation will occur if
+H(MO+XH)EXF<_;) Hk—XHzﬂk. (36)
H - R 42
=My (42

Excludingv from Eq. (36), we come to

andH. is the critical field of this ferronematic remagnetiza-
tion. This result is in agreement with the conclusions of Refs.

D o), 37 L1
ot ' The valuek=k_ corresponding to the maximum of posi-
tive gy, is
t 2 2 2| p—1 2 1
= | Hr(Mo+ xH)exp ——| = xH? = K07~ Kak? | B ", ki=o(—b+\b?+4ea),
2
7e(y17mc— a3) Kt 27 Kat
— 7/ck2+ 77aq2 a= 2 ’ = ’ (43)
B t= : ynnigt G 7297 G(1)
(7176~ a)k*+ 7,7102 ) )
ag K3t

It must be noted that for all real syster@g>0. o= _ _
Until this time the fluctuations of, were not taken into yima9?> G
account. To account for them let us introduce into E3Y)

the random force,(t) and rewrite this equation as follows: Physically admissible values 6£>0 correspond tap>0

or, in other words,

96y t 2 2
,BKWZBkwKGk-I—&(. (38) HT(M0+XH) 1-ex _; _(XH +K2q )t

The correlation relations fof¢,) are given in Eq(17). a¥1 K3qgt. (44)

Using Egs.(38) and(17), we obtain a;



At t/7<<1 the inequality(44) holds when

MaY1 &)
o Ko’
Therefore ifH>H.; then g, as a function fromk has a
maximum atk=Kk, and nonequilibrium structures periodical
along the axi€Ox will arise in this ferronematic at the onset
of its remagnetization.

Let k,, be the value ok corresponding to the maximum
(05). It is easy to show from Eqg39), (40), and (43) that
k,=0 att=0 andk,,— k. with the increasing. As k; is not
a constant(but a decreasing function df, the period of
harmonicé, with a maximum amplitude will decrease at the
onset of reorientation with the subsequent increase.

H>F%1=Hc<l+ (45

B. Rotation of n in (x,y) plane. Structures periodical
along axisOy

In this case the solvent velocity is directed along &xis
Instead of Eq.(30) the nematodynamic equatiori$2) are
now

ad d

o &y[e(ag,cosza—azsinze)]

2
—{v[2(v1— 94+ 74)SiMFOCOS O
ay?

_ 7?0
+pesin* 6+ pyco 0]} + —
(46)
X[v(75Sirt 0+ 7,c06)],

a0 9 9?
Yi— [v(a3c0S0— a,sirtd)]+——[ 6(K,cos 0
(7t &yz

ay

. >0 _
+Kgsirtg) ]+ KZF + MHsiné.
z

NONEQUILIBRIUM STRUCTURES IN THE THIN ...

4303

2\ T 2 2 -1
(661 v (Kik™+ K07+ MoHo) ™~ (48
HereG(s) is the same function as in E9). Instead of
Eq. (43) we obtain now

1
(k92=§£7[—b’+\Kbq2+4¢’aq,
Kt

Y1 a5 Kt _
9°G(t)’

yimeat GO’

!

(49

, C(% Klt
o =—— =
yimd? G

At t/7<1 Eq. (49 has admissible solutions if

7y Ks

2

H>HQ=H41+

If H>H, and Hg;>H,, theng,,>g, and nonequilib-
[

rium structures periodic alon@y will arise at the onset of
ferronematic remagnetization. H>H.; and H,>H,,
these structures will be periodical alo@y. It is necessary
to note that these structures cannot occur at titees, so it
is very difficult to observe them in pure molecular nematics
wherer, as a rule, is very small.

The rotation ofn in the plane k,z) may be studied just as
was done in Sec. VI A or VI B. The analysis shows that in
this caseg 0§) is much less than that in Eq&tl) and (47).

VII. CONCLUSIONS

If the initial nematic directomy and external magnetic
field H are parallel to the plane of a gap filled by the fer-
ronematic under the condition ¢11 ng, then ferronematic
magnetization occurs as second phase transitiom Fred-
eriks effeci provided that the magnetic field is larger than
the critical one, and nonequilibrium structures periodic along

Repeating the reasonings of Sec. VI A we obtain the follow-No €an occur at the onset of a Frederiks transition. The

ing expressions instead of Eq89) and (40):

0= 2 0 .cokycogyz,
k

4T [t
<6ﬁ<t)>=(<eék>'+ @foexq—zgﬁ<t'>]dt')

xexd 294 ()], (47

(s G(s)—Kk?s
()= ———,
Bk

ask?
Bk=Y1" 5o
“ (K24 0?)

and

growth of these structures decreases with an increase of the
characteristic timer of the suspension remagnetization.rIf

is large enough, these structures cannot arise. Similar struc-
tures cannot occur in rigidly magnetized ferronematics. If
nonzero initial magnetizatiodM, is frozen in the solvent
with the magnetic fieldH perpendicular tiM  but parallel to

the switched on gap plane, then the ferronematic remagneti-
zation is induced by an infinitesimal field and the solvent
structure will be homogeneous during this process.

If the ferronematic has a nonzero initial magnetizatiby
parallel to the gap plane and the fididantiparallel toM is
switched on, then nonequilibrium structures may occur in the
ferronematic at the onset of its remagnetization provided that
the field exceeds the critical one.
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