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Nonequilibrium structures in the thin layers of ferronematics

Andrej Yu. Zubarev and Larisa Yu. Iskakova
Urals State University, Lenin Avenue 51, 620 083 Ekaterinburg, Russia

~Received 4 April 1997!

The onset of remagnetization of ferronematics~suspensions of stretched ferromagnetic colloidal particles in
nematic solvent! filling a thin flat gap has been studied. We supposed that the average deviation of the particles
axis from nematic directorn is very small in each volume of the sample; both the initial nematic directorn0

and the external magnetic fieldH being parallel to the plane of a gap contained by a sample. On the basis of
a microscopic analysis and the Fokker-Planck equation for a ferromagnetic particle the macroscopic equation
describing the kinetics of the suspension remagnetization has been derived. This equation includes an empirical
relaxation timet. With the help of this equation three cases have been considered. The first one concerns a
suspension with zero initial magnetization and fieldH perpendicular ton0. The second one concerns a sus-
pension with a frozen to a solvent nonzero magnetization (t is greater than time of observation! and the field
H directed such as in the first case. The third situation corresponds to nonzero initial magnetizationM0 of a
suspension,M0 being parallel ton0 and fieldH being antiparallel toM0. In the first and third cases remag-
netization occurs as the second order phase transition only ifH exceeds some critical valueHc and periodic
structures can arise at the initial stage of this process ifH.Hc1.Hc . In the second case ferronematic
remagnetization is initiated by an infinitesimal magnetic field. The structures arising during this phase transi-
tion are homogeneous in both directions ofn0 andH. @S1063-651X~98!02403-9#

PACS number~s!: 61.30.Gd, 75.50.Pp
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I. INTRODUCTION

The stable suspensions of nonspherical colloidal fe
magnetic particles in the nematic liquid crystals~ferronemat-
ics! attract considerable interest because their structure
be controlled by means of small magnetic fields, which
impossible for pure liquid crystals. Their physical propert
have been investigated theoretically and experimentally,
example, in Refs.@1–7#. The equilibrium ferronematics Fre
deriks effect has been studied in Refs.@6,7#. The kinetics of
such a phase transition has not yet been studied.

The main aim of the present research is the analysis of
initial stage of remagnetization in a ferronematic filling
thin flat gap. The analysis is based on the following assum
tions.

First, all particles are identical and needlelike shap
Their magnetic moments are constant at absolute values
are aligned along their symmetry axes.

Second, the interaction between ferromagnetic partic
and the nematic solvent is very strong. As a result, all
particles are aligned along the nematic directorn in each
small volume element and average deviations of the par
axes fromn are negligibly small.

Third, the particle concentrationc is small enough to ne
glect their magnetic interaction with each other.

Fourth, the solvent molecules strongly interact with g
boundaries and on these surfaces vectorn has a constan
direction.

Finally, we shall neglect the interaction between the m
netic field and the solvent molecules.

It should also be noted that two limiting mechanisms ex
for the ferroparticles reorientation in ferronematics under
presence of an external magnetic field. The first one is c
nected with the rotation of the particle with the nearest la
of liquid crystal. Ferroparticles with different orientations
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magnetic moments turn in the field in different direction
therefore, this mechanism may lead to the occurrence
variety of defects in a nematic matrix. The formation of su
defects is very disadvantageous energetically, so the p
ability of this reorientation mechanism is very small.

In the second case each particle turns practically with
any perturbation of the director field in the particle in th
nearest vicinity. To do this, the particle needs to overcom
potential barrier corresponding to the perpendicular orien
tion of the particles and the director.

This mechanism of particle reorientation may be realiz
in practice if the thermal energy of the system is not neg
gibly small compared to the height of this barrier. We a
sume this method of particle reorientation.

II. EQUATION OF MAGNETIZATION
CHANGE KINETICS

Our aim now is to derive the macroscopic kinetic equ
tion for the absolute value of a ferronematic magnetizati
Let us introduce a unit vectore aligned along the particle
magnetic momentm and the distribution functionf (e) nor-
malized to unity. The suspension magnetizationM is

M5mcE ef ~e!de, ~1!

where m stands for the absolute value of the particle m
ment. The distribution functionf may be determined from
the Fokker-Planck equation@8#. Let us write this equation in
the coordinate system connected with the nematic direct

] f

]t
5K S f

D

T
KU D1KDK f , ~2!
4296 © 1998 The American Physical Society
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K5Fe
]

]eG .
HereU(e) is the particle potential energy andT is the abso-
lute temperature in energetic units. In general, the rotatio
diffusivity D is a second rank tensor for a nematic system
components are functions ofe. To simplify the calculations
we suppose, as in@8#, thatD is a scalar constant. The orde
of valueD will be determined below.

The potential energyU of the particle is defined as fol
lows:

U52~ae!1Un , a5
mH

T
, ~3!

whereH is the magnetic field andUn(e) is the interaction
energy between a particle and a nematic solvent. The exp
expression forUn , as a rule, is unknown. Letw be the angle
between the particle axis and the directorn and

Un52u0w~cos2w!, ~4!

wherew(x) is a dimensionless function andu0 is an ampli-
tude ofUn . We assume that the interaction between a p
ticle and a solvent is so strong that the probability of a p
ticle to be aligned alongn is much greater than that in othe
directions. In so doing, the functionw(x) is characterized by
a sharp maximum atx51 and minimum atx50. Therefore,
the strong inequalities

du5u0@w~1!2w~0!#@T, du@aT ~5!

hold true. For the above mentioned reason, one may write~as
was done in Refs.@9,10#!

f 'p1d~w20!1p2d~w2p!, ~6!

p11p251.

Herep6 are the probabilities to find a particle magnetic m
ment aligned along the axesw50 andw5p, respectively,
andd(x) is the delta function.

By using the results of Refs.@9,10# and taking into ac-
count the strong inequalities~5!, we obtain from Eq.~1! at
D5const the equations forp6 :

dp1

dt
52

dp2

dt
52~W1p12W2p2!

52~W11W2!p11W2 ;

W65c6exp@2~Umax2U6!/T#,
~7!

c65
D

T
g6~gm/2pT!1/2sinwm ,

g6'
d2U

dw2
~w50,p!,

gm'2
d2U

dw2S w5
p

2 D ,
al
s

cit

r-
-

-

whereUmax is the maximum value ofU, wm is the value ofw
corresponding toUmax, andU1 andU2 have the meanings
of two minima of the energyU (U1,U2). Taking into
account the inequalities~5!, we may use the following ap
proximations:

U152u0w~1!2a uuT, U252u0w~1!1a uuT,

Umax52u0w~0!2a'T,

wm5
p

2
,

wherea uu and a' are the components of vectora parallel
and normal to the directorn. According to Eq.~6!, the mean
absolute value of the particle magnetic moment^m& may be
introduced as follows:

^m&5m~p12p2!.

Thus, we may obtain the expression for the ferronema
magnetization

M5c^m&5cm~p12p2!. ~8!

It must be noted that according to our assumptions the di
tions of magnetizationM andn coincide in each small vol-
ume of the system.

Let us denote byp6
0 the equilibrium values ofp6 corre-

sponding to the fieldH. In the approximation~5! we get

p6
0 '

1

2

exp~6a uu!

cosh~a uu!
. ~9!

The equilibrium magnetizationM0, taking Eqs.~8! and ~9!
into account, is

M05cm~p1
0 2p2

0 !5cm tanh~a uu!. ~10!

Substituting Eqs.~9! and~10! into Eqs.~7! and~8!, we come
to the equation for the magnetization:

dM

dt
52

1

t
~M2M0!,

~11!

1

t
5W11W2;DexpS 2

du

T
1a'D cosh~a uu!.

Let us estimate an order of magnitude of relaxation ti
t. The estimation for the diffusion coefficientD is

D;
T

h ldp
2

,

whereh is the Miesowicz shear viscosity andl and dp are
the length and diameter of a particle (l @dp). For the values
l;1025 sm, dp;1026 sm, andh;1 ps @11# we have the
estimationt;@0.1exp(du/T2a')/cosh(auu)#sec.

Strictly speaking, the relation~7! is valid only for the
constant potential barrier in the planew5p/2. In general, if
aÞ0 this does not hold because the height of barrierUmax in
the planew5p/2 approximately equalsW(0)2T(a'e).
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A strict derivation of equation similar to Eq.~7! for the
systems characterized by an inconstant height of the po
tial barrier represents a very complicated problem. We do
know of any papers containing a constructional decision c
venient for use in practice. However, it is clear that the m
probability of flux during particle reorientation taking plac
in the neighborhood of a minimal point of the potential ba
rier. Therefore, in the first approximationW6 may be esti-
mated as if the height of the potential barrier was cons
and equal to its height in a saddle point@in this case
2u0v(0)2a'T#. It is this approximation we have used.
this situation we obtain the upper estimate for the probab
W6 and lower estimate for the relaxation timet. If a does
not exceed unity, then our estimate does not lead to sig
cant errors.

III. EQUATIONS OF NEMATODYNAMICS

Neglecting inertial effects, the standard equations
nematodynamics are@11#

¹s50, divv50, ~12!

@MH #1@nh#5$n@g1N1g2~nA!#%,

s i j 52pd i j 1a1ninjAkmnknm1a2niNj1a3njNi1a4Ai j

1a5ninkAk j1a6Aiknknj ,

N5
dn

dt
1@nv#, v5

1

2
rotv, Ai j 5

1

2S ]v i

]xj
1

]v j

]xi
D ,

h5K1¹divn1K2$@n¹~nrotn!#22rotn~nrotn!%

1K3$rot@n@nrotn##2@rotn@nrotn##%,

g15a32a2 , g25a62a5 , i , j 5x,y,z.

Here v is the velocity of a suspension,p is the pressure
a1 , . . . ,a6 and K1 , K2 , K3 are the Leslie and Frank co
efficients of the nematic, andd i j is the Kroneeker symbol.

IV. THE INITIAL STAGE OF FREDERIKS TRANSITION
IN DEMAGNETIZED FERRONEMATICS

We now consider a ferronematic inside a flat gap of thi
nessd ~Fig. 1! and assume that the initial magnetizationM0
of the suspension is zero. Let us introduce a Cartesian c
dinate system with the origin at the center of the gap. T

FIG. 1. Schematic representation of the studied system.~1! mol-
ecules of liquid crystal base;~2! ferromagnetic particles.
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axis Ox is parallel and axisOz is normal to the boundary
planes. We assume that the initial nematic directorn0 is par-
allel to Ox and on the boundaries of a gap~i.e., uzu5d/2),
and that the conditionnx51 always holds. The constan
magnetic fieldH aligned with the axisOy is switched on at
t50. We assume that the dimensionless field is negligi
small (a!1), thereforet(a)'t(0)5const.

Experimental and theoretical investigations of the Fre
eriks effect kinetics in pure nematics@12–15# have shown
that periodic nonequilibrium structures in the direction
axisOx can occur in this process. Thus, we need to take i
account thex andz dependencies ofn andv, but not they
dependence. The velocityv in this situation has only the
componentvy @12–15#.

Let us introduce the angleu according to the formulas

nx5cosu, ny5sinu.

Equations~11! and ~12! become

]2

]t]x
@u~a3sin2u2a2cos2u!#

5
]2

]x2
$v@2~n12h41ha!sin2ucos2u

1hccos4u1hbsin4u#%1
]2

]z2

3@v~hacos2u1hbsin2u!#,

~13!

g1

]u

]t
5

]

]x
@v~a3sin2u2a2cos2u!#1

]2

]x2
@u~K1sin2u

1K3cos2u!#1K2

]2u

]z2
1MHcosu,

dM

dt
52

m

t
@M2tanh~asinu!#,

m5mc, ha5
1

2
a4 , hb5

1

2
~a31a41a6!,

hc5
1

2
~2a21a41a5!, h45

1

2
~hb1hc2g1!,

n15
1

2
~a11a41a51a6!.

Here ha , hb , and hc are the Miesowicz shear viscositie
andh1 is the elongated flow viscosity.

At the onset of ferronematic remagnetization the values
u, v, and M /m are small. We assume that 0,(H2Hc)
!Hc , whereHc is the critical field of the Frederiks phas
transition. Therefore, we can write
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u~x,z,t !5cosqz(
k

ukcoskx,

v~x,z,t !5cosqz(
k

vksinkx, ~14!

M ~x,z,t !5cosqz(
k

Mkcoskx, q5
p

d
.

Linearizing Eq.~13! over u and v, taking Eq.~14! into ac-
count, we come to the following equation for the harmon
incrementpk :

duk

dt
5vkuk1

1

ge
MkH,

dMk

dt
52

1

t
~Mk2mnauk!, ~15!

vk5
K3k21K2q2

ge
, ge5g12

~a2k!2

hck
21haq2

.

For all real nematicsg1hc.a2
2, therefore,ge.0.

The system~15! is valid provided that the characterist
values ofuk and Mk are much more than their thermod
namical fluctuations. However, this condition fails for th
onset of the Frederiks transition.

To account for the fluctuations ofuk andMk we introduce
into Eq. ~15! stochastic forces with zero average values:

duk

dt
5vkuk1

1

ge
MkH1jk~ t !,

dMk

dt
52

1

t
~Mk2mnauk!1zk~ t !, ~16!

^jk&50, ^zk&50.

From the fluctuation-dissipative theorem we have

^jk~ t !jk8~ t8!&5
2T

geV
d~ t2t8!dkk8,

^zk~ t !zk8~ t8!&5
2Tx

tV
d~ t2t8!dkk8, ~17!

^jk~ t !zk~ t8!&50, x5
m2c

T
.

Herex is the initial magnetic susceptibility of ferronemati
ExcludingMk from Eq. ~16!, we obtain

duk~ t !

dt
1vkuk~ t !2

mnaH

tge
E

0

t

uk~ t8!expS 2
t2t8

t D5F~ t !,

~18!

F~ t !5
Mk0H

ge
expS 2

t

t D1
H

ge
E

0

t

expS 2
t2t8

t D zk~ t8!dt8

1jk~ t !, Mk05Mk~0!.
Let us writeuk in the following form:

uk~ t !5G~ t !uk01E
0

t

G~ t2t8!F~ t8!dt8,

~19!

uk05uk~0!, G~0!51,
dG

dt
u t5052vk

@the second condition forG follows from the system~15!#.
Here G is the Green function. Substituting Eq.~19! into

Eq. ~18!, we obtain

G~ t !5
vk

p22p1
@exp~p1t !2exp~p2t !#1exp~p2t !,

~20!

p1,25
1

2F2
11vkt

t
6AS 11vkt

t D 2

24
vkge2mnaH

tge
G .

The mean valuêuk0& ~and thereforêuk&) is equal to zero. It
is easy to show that̂F(t)uk0&50. Taking this into account
we obtain the following equation for the second moment
uk :

^uk~ t !2&5G2~ t !^uk0
2 &1E

0

tE
0

t

G~ t2t1!G~ t2t2!

3^F~ t1!F~ t2!&dt1dt2 . ~21!

The initial momentŝ uk0
2 & and ^Mk0

2 & are equal to the
corresponding moments until the fieldH is switched on.
They may be determined using standard thermodynam
considerations:

^uk0
2 &5

T

~K3k21K2q2!V
,

~22!

^Mk0
2 &5

Tx

V
.

Using Eqs.~17! and ~18!, one may obtain

^F~ t1!F~ t2!&5
H2

ge
2 ^Mk0

2 &expS 2
t11t2

t D
12

TxH2

Vge
2

expS 2
t22t1

t DQ~ t22t1!

1
2T

Vge
d~ t22t1!, ~23!

where Q(x) is the theta function. Substituting Eqs.~20!,
~22!, and~23! into Eq. ~21!, we come to the explicit expres
sion for the second moment ofuk(t).

If the incrementp1 is positive, then the moment̂uk
2&

increases with time, if negative then it decreases. The in
mentp1 is more than zero provided that

mcHa5cTa2.K3k21K2q2. ~24!

Let
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ac5qAK2

cT
. ~25!

If a.ac then p1 is positive for allk2,(cTa22K2q2)/K3

and, therefore, the Frederiks transition occurs. This result
the critical field of Frederiks phenomenon corresponds to
results of equilibrium thermodynamical theory~see, for ex-
ample,@11#!.

In Fig. 2 the results are shown of calculation ofp1 as a
function of k. If a is less than some criticala8.ac , then
p1(k) is a monotonically decreasing function. It means th
the harmonic withk50 has the maximum velocity of growt
and the ferronematic will be homogeneous along the axisOx
during the Frederiks transition. But ifa.a8, the function
p1(k) have a maximum atkmÞ0. Therefore the harmonic
with k5km has a maximum growth velocity and the no
equilibrium structures periodical alongOx will occur at the
Frederiks transition. Earlier, such a conclusion was mad
@12–15# for a pure molecular nematic witht50. The plots
of p1 as function oft are given in Fig. 3.

FIG. 2. Plots ofp1 (sec21) vs x5k2/q2. ~a! p510 swx; 12a
50.008 48 4039, 22a50.008 48 4041, 32a50.008 48 4043.~b!
a50.01; 12t50.1 sec, 22t510 000 sec, 32t520 000 sec. The
system parameters arec51016 cm23, T5300° KkB , d51022 cm.
The elastic and viscous characteristic of nematic are the same a
the PBG system@13#: K1512.131027 dyn,K250.7831027 dyn,
K357.6331027 dyn; ha51.74P, hb50.37P, hc569.4P, g1

569.4 P.
or
e

t

in

V. THE INITIAL STAGE OF REMAGNETIZATION
OF RIGIDLY MAGNETIZED FERRONEMATICS

We assume here that before the fieldH is switched on the
ferronematic is magnetized along theOx axis and the char-
acteristic timet is much greater than the time of the expe
ment. In this situationM5const throughout the phase tra
sition. At the initial stage of the process, Eqs.~13! reduce to

2a2

]2u

]t]x
5hc

]2v

]x2
1ha

]2v

]z2
,

g1

]u

]t
52a2

]v
]x

1K3

]2u

]x2
1K2

]2u

]z2
1MH,

u!1, M5const, ~26!

u~z,t50!,v~z,t50!50, u~z56d/2,t !,

v~z56d/2,t !50.

We shall seek the solution of the problem~19! in the form

u5(
k

wk~z,t !coskx, v5(
k

uk~z,t !sinkx. ~27!

If the system is infinite in the direction ofx then all harmon-
ics with kÞ0 will dissipate. Thus the only harmonic wit
k50 is of interest to us. In distinction to the preceding sit
ation with zero initial magnetization, the small thermod
namical fluctuations ofu andM are not of principal impor-
tance for us now.

Coupling Eq.~27! with Eq. ~26!, we have

for

FIG. 3. Plot ofp1 (sec21) as a function ont ~sec!. The physi-
cal parameters of the system are the same as for Fig. 2. The fig
near curves are equal to (k/q)2.
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a2k
]wk

]t
52hck

2uk1ha

]2uk

]z2
,

g1

]wk

]t
5a2kuk2K3k2wk1K2

]2wk

]z2
, kÞ0,

g1

]w0

]t
5K2

]2w0

]z2
1MH, ~28!

wk~z,0!, uk~z,0!50, wkS 6
d

2
,t D ,

ukS 6
d

2
,t D50, for all k.

The solution of Eq.~28! is

wk50, kÞ0,

w05
4MHd2

K2
(

n51,3, . . . ,

`
1

~pn!3F12expS 2
K2

g1
qn

2t D G
3sinFqnS z1

d

2D G , ~29!

qn5
pn

d
.

As follows from Eq.~29!, the distortion of nematic struc
ture can occur now in the infinitesimal magnetic field~the
same conclusion was arrived at the analyses@6,7# of the
equilibrium state of ferronematics! and ferronematic has
homogeneous structure in the gap plane during remagne
tion.

VI. THE FIELD H ANTIPARALLEL
TO INITIAL MAGNETIZATION

Let at the initial moment the nematic directorn0 and fer-
ronematic magnetizationM0 be aligned with the axisOx. At
t50 the external magnetic fieldH antiparallel to M0 is
switched on. Our aim again is the investigation of the init
stage of then reorientation when the angleu betweenn and
n0 is very small. We assume thatM0 is much more than its
thermodynamical fluctuations and neglect them.

During reorientationn may rotate in a sufficiently com
plex manner and may be unhomogeneously dependen
radius vectorr . But if u is small then the movement ofn
may be interpreted as a superposition of its rotation in pl
(x,y) ~with structures periodical along the axisOx and axis
Oy) and rotation in plane (x,z). Let us study these types o
movement ofn separately.
a-

l

on

e

A. Rotation of n in plane „x,y…. Structures periodical
along axisOx

The suspension velocityv now must be aligned with axis
Oy and periodical alongOx. The nematodynamic equation
~12! in this situation are

]

]t

]

]x
@u~a3sin2u2a2cos2u!#

5
]2

]x2
$v@2~n12h41ha!sin2ucos2u

1hccos4u1hbsin2u#%

1
]2

]z2
@v~hacos2u1hbsin2u!#,

~30!

g1

]u

]t
5

]

]x
@v~a3sin2u2a2cos2u!#1

]2

]x2
@u~K1sin2u

1K3cos2u!#1K2

]2u

]z2
1MHsinu,

a25
1

2
~hb2hc2g1!, a35

1

2
~hb2hc1g1!,

h45
1

2
~hb1hc2g1!.

For this situation in the linear approximation byH, Eq. ~11!
is

]M

]t
52

1

t
~M1xHcosu!. ~31!

Here we take into account the sign ofH projection into axis
Ox.

In the linear approximation byu andv Eqs.~30! and~31!
become

2a2

]

]t

]

]x
u5hc

]2v

]x2
1ha

]2v

]z2
,

g1

]u

]t
5a2

]v
]x

1K3

]2u

]x2
1K2

]2u

]z2
1MHu ~32!

]M

]t
52

1

t
~M1xH !.

Solving the last equation, we obtain

M52xH1~M01xH !expS 2
t

t D . ~33!

Substituting Eq.~33! into the first and second equations
Eq. ~32!, we come to the following system:
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2a2

]

]t

]

]x
u5hc

]2v

]x2
1ha

]2v

]z2
,

~34!g1

]u1

]t
5a2

]v
]x

1K3

]2u

]x2
1K2

]2u

]z2

1H~M01xH !uexpS 2
t

t D2xH2u.

Below we assume that (H2Hc)/Hc!1, whereHc is the
critical field of reorientation@1,11#. We seek the solution o
Eq. ~34! in the form

u5(
k

uk~ t !coskxcosqz, v5(
k

vk~ t !sinkxcosqz.

~35!

Substituting Eq.~35! into Eq. ~34!, one obtains

a2k
]uk

]t
52~hck

21haq2!vk ,

g1

]uk

]t
52a2kvk2~K3k21K2q2!uk

1H~M01xH !expS 2
t

t D uk2xH2uk . ~36!

Excludingv from Eq. ~36!, we come to

]uk

]t
5vk~ t !uk , ~37!

vk5FHt~M01xH !expS 2
t

t D2xH22K2q22K3k2Gbk
21 ,

bk
215

hck
21haq2

~g1hc2a2
2!k21hag1q2

.

It must be noted that for all real systemsbk.0.
Until this time the fluctuations ofuk were not taken into

account. To account for them let us introduce into Eq.~37!
the random forcejk(t) and rewrite this equation as follows

bk

]uk

]t
5bkvkuk1jk . ~38!

The correlation relations for̂jk& are given in Eq.~17!.
Using Eqs.~38! and ~17!, we obtain
^uk
2~ t !&5S ^u0k

2 &1
4T

bkV
E

0

t

exp@22gk~ t8!#dt8D exp@2g~ t !#,

gk~s!5E
0

s

vk~s8!ds85
G~s!2K3k2s

bk
, ~39!

G~s!5Ht~M01xH !F12expS 2
s

t D G2~xH21K2q2!s.

The initial value^u0k
2 & of the moment̂ uk

2& may be deter-
mined according to thermodynamical theory of fluctuatio
Using the standard results of this theory, we get the follo
ing expression:

^u0k
2 &5

2T

V
~K3k21K2q21M0H0!21, ~40!

whereH0 is the magnetic field up to the momentt50 when
the fieldH is switched on~we assume thatH0 is parallel to
M0).

At t/t!1,

gk'
1

bk
~M0H2K2q22K3k2!t. ~41!

If h5M0H2K2q2.0 thengk is positive for allk,Ah/K3.
As follows from Eq.~39!, the corresponding moment^uk

2&
increases. So the nematic reorientation will occur if

H.Hc5
K2q2

M0
~42!

andHc is the critical field of this ferronematic remagnetiz
tion. This result is in agreement with the conclusions of Re
@1,11#.

The valuek5kc corresponding to the maximum of pos
tive gk , is

kc
25

1

2a
~2b1Ab214wa!,

a5
hc~g1hc2a2

2!

g1ha
2q4

K3t

G~ t !
, b5

2hc

haq2

K3t

G~ t !
, ~43!

w5
a2

2

g1haq2
2

K3t

G~ t !
.

Physically admissible values ofkc
2.0 correspond tow.0

or, in other words,

Ht~M01xH !F12expS 2
t

t D G2~xH21K2q2!t

.
hag1

a2
2

K3q2t. ~44!
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At t/t!1 the inequality~44! holds when

H.Hc15HcS 11
hag1

a2
2

K3

K2
D . ~45!

Therefore if H.Hc1 then gk as a function fromk has a
maximum atk5kc and nonequilibrium structures periodic
along the axisOx will arise in this ferronematic at the onse
of its remagnetization.

Let km be the value ofk corresponding to the maximum
^uk

2&. It is easy to show from Eqs.~39!, ~40!, and ~43! that
km50 at t50 andkm→kc with the increasingt. As kc is not
a constant~but a decreasing function oft), the period of
harmonicuk with a maximum amplitude will decrease at th
onset of reorientation with the subsequent increase.

B. Rotation of n in „x,y… plane. Structures periodical
along axisOy

In this case the solvent velocity is directed along axisOx.
Instead of Eq.~30! the nematodynamic equations~12! are
now

]

]t

]

]y
@u~a3cos2u2a2sin2u!#

5
]2

]y2
$v@2~n12h41ha!sin2ucos2u

1hcsin4u1hbcos2u#%1
]2u

]z2

3@v~hasin2u1hbcos2u!#,
~46!

g1

]u

]t
5

]

]y
@v~a3cos2u2a2sin2u!#1

]2

]y2
@u~K1cos2u

1K3sin2u!#1K2

]2u

]z2
1MHsinu.

Repeating the reasonings of Sec. VI A we obtain the follo
ing expressions instead of Eqs.~39! and ~40!:

u5(
k

ukcoskycosqz,

^uk
2~ t !&5S ^u0k

2 &81
4T

bk8V
E

0

t

exp@22gk8~ t8!#dt8D
3exp@2gk8~ t !#, ~47!

gk8~s!5
G~s!2K1k2s

bk8
,

bk85g12
a2

2k2

hb~k21q2!
,

and
-

^u0k
2 &85

T

V
~K1k21K2q21M0H0!21. ~48!

HereG(s) is the same function as in Eq.~39!. Instead of
Eq. ~43! we obtain now

~kc8!25
1

2a8
@2b81A~b8!214w8a8#,

a85
g1hb2a3

2

g1hb
2q4

K1t

G~ t !
, b85

K1t

q2G~ t !
, ~49!

w85
a3

2

g1hbq2
2

K1t

G~ t !
.

At t/t!1 Eq. ~49! has admissible solutions if

H.Hc25HcS 11
hbg1

a3
2

K3

K2
D .

If H.Hc2 and Hc1.Hc2 then gk
c8

8 .gk and nonequilib-

rium structures periodic alongOy will arise at the onset of
ferronematic remagnetization. IfH.Hc1 and Hc2.Hc1,
these structures will be periodical alongOy. It is necessary
to note that these structures cannot occur at timest@t, so it
is very difficult to observe them in pure molecular nemat
wheret, as a rule, is very small.

The rotation ofn in the plane (x,z) may be studied just as
was done in Sec. VI A or VI B. The analysis shows that
this casê uk

2& is much less than that in Eqs.~41! and ~47!.

VII. CONCLUSIONS

If the initial nematic directorn0 and external magnetic
field H are parallel to the plane of a gap filled by the fe
ronematic under the condition ofH'n0, then ferronematic
magnetization occurs as second phase transition~the Fred-
eriks effect! provided that the magnetic field is larger tha
the critical one, and nonequilibrium structures periodic alo
n0 can occur at the onset of a Frederiks transition. T
growth of these structures decreases with an increase o
characteristic timet of the suspension remagnetization. Ift
is large enough, these structures cannot arise. Similar s
tures cannot occur in rigidly magnetized ferronematics.
nonzero initial magnetizationM0 is frozen in the solvent
with the magnetic fieldH perpendicular toM0 but parallel to
the switched on gap plane, then the ferronematic remagn
zation is induced by an infinitesimal field and the solve
structure will be homogeneous during this process.

If the ferronematic has a nonzero initial magnetizationM0
parallel to the gap plane and the fieldH antiparallel toM0 is
switched on, then nonequilibrium structures may occur in
ferronematic at the onset of its remagnetization provided
the field exceeds the critical one.
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